Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The EMBO Journal
Article . 1997 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
The EMBO Journal
Article . 1997
versions View all 2 versions

FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands

Authors: M T, Bedford; D C, Chan; P, Leder;

FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands

Abstract

WW domains are conserved protein motifs of 38-40 amino acids found in a broad spectrum of proteins. They mediate protein-protein interactions by binding proline-rich modules in ligands. A 10 amino acid proline-rich portion of the morphogenic protein, formin, is bound in vitro by both the WW domain of the formin-binding protein 11 (FBP11) and the SH3 domain of Abl. To explore whether the FBP11 WW domain and Abl SH3 domain bind to similar ligands, we screened a mouse limb bud expression library for putative ligands of the FBP11 WW domain. In so doing, we identified eight ligands (WBP3 through WBP10), each of which contains a proline-rich region or regions. Peptide sequence comparisons of the ligands revealed a conserved motif of 10 amino acids that acts as a modular sequence binding the FBP11 WW domain, but not the WW domain of the putative signal transducing factor, hYAP65. Interestingly, the consensus ligand for the FBP11 WW domain contains residues that are also required for binding by the Abl SH3 domain. These findings support the notion that the FBP11 WW domain and the Abl SH3 domain can compete for the same proline-rich ligands and suggest that at least two subclasses of WW domains exist, namely those that bind a PPLP motif, and those that bind a PPXY motif.

Keywords

Fetal Proteins, Binding Sites, Proline, Microfilament Proteins, Molecular Sequence Data, Formins, Nuclear Proteins, Cell Cycle Proteins, Cross Reactions, Fatty Acid-Binding Proteins, Ligands, Phosphoproteins, Mice, Consensus Sequence, Mutagenesis, Site-Directed, Animals, Carrier Proteins, Oncogene Proteins v-abl, Adaptor Proteins, Signal Transducing, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    207
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
207
Top 10%
Top 1%
Top 1%
bronze