Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Cancer
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions

Synergistic anti-tumoral effect of paclitaxel (taxol)+AS101 in a murine model of B16 melanoma: Association with ras-dependent signal-transduction pathways

Authors: Michael Albeck; Adi Shani; Raphael Catane; Yona Kalechman; Dan L. Longo; Benjamin Sredni;

Synergistic anti-tumoral effect of paclitaxel (taxol)+AS101 in a murine model of B16 melanoma: Association with ras-dependent signal-transduction pathways

Abstract

Optimal doses of paclitaxel (Taxol) combined with the immunomodulator AS101, previously shown to have anti-tumoral effects, administered to B16 melanoma-bearing mice decreased tumor volume and resulted in over 60% cure. Paclitaxel+AS101 directly inhibited the clonogenicity of B16 melanoma cells in a synergistic, dose-dependent manner. We suggest that this results from both reduced paclitaxel-induced bone marrow toxicity and induction of differential signal-transduction pathways, which lead to apoptosis of tumor cells. Paclitaxel+AS101 synergistically activated c-raf-1 and MAPK ERK1 and ERK2. This activation was essential for the synergistic induction of p21(waf) protein. Cell-cycle analysis of B16 cells treated with both compounds revealed an increased accumulation in G(2)M, though AS101 alone produced significant G(1) arrest. These activities were ras-dependent. AS101+paclitaxel induced significant synergistic phosphorylation (inactivation) of the anti-apoptotic protein Bcl-2. Whereas phosphorylation of Bcl-2 by paclitaxel was raf-dependent only, the synergistic effect of both compounds together was ras-, raf- and MAPK-dependent. No effect of the combined treatment on Bax protein expression was observed. We suggest that AS101 renders more cells susceptible to Bcl-2 phosphorylation by paclitaxel, possibly by increasing the accumulation of paclitaxel-induced cells in G(2)M. Exposure of B16 cells to clinically achievable concentrations of paclitaxel+AS101 increased the rate of apoptosis of treated cells. Apoptosis induced by AS101 alone was both raf- and MAPK-dependent, while that induced by paclitaxel was raf-dependent only.

Keywords

Male, Mitogen-Activated Protein Kinase 1, Paclitaxel, Cell Cycle, Melanoma, Experimental, Apoptosis, Drug Synergism, Ethylenes, Antineoplastic Agents, Phytogenic, Enzyme Activation, Mice, Inbred C57BL, Proto-Oncogene Proteins c-raf, Mice, Bone Marrow, Antineoplastic Combined Chemotherapy Protocols, ras Proteins, Animals, Neoplasm Transplantation, Spleen, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Related to Research communities