Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

CD9 controls the formation of clusters that contain tetraspanins and the integrin α6β1, which are involved in human and mouse gamete fusion

Authors: Ahmed, Ziyyat; Eric, Rubinstein; Frédérique, Monier-Gavelle; Virginie, Barraud; Olivier, Kulski; Michel, Prenant; Claude, Boucheix; +2 Authors

CD9 controls the formation of clusters that contain tetraspanins and the integrin α6β1, which are involved in human and mouse gamete fusion

Abstract

The process of gamete fusion has been largely studied in the mouse and has revealed the crucial role of the tetraspanin CD9. By contrast, human gamete fusion remains largely unknown. We now show that an anti-α6 integrin mAb (GoH3) strongly inhibited human sperm-egg fusion in human zona-free eggs. Furthermore, a mAb directed against CD151, a tetraspanin known to associate with α6β1, partially inhibited sperm-egg fusion. By contrast, the addition of an anti-CD9 mAb to zona free eggs had no effect. The integrin α6β1, CD151 and CD9 tetraspanins were evenly distributed on human zona-intact oocytes. On zona-free eggs, the integrin α6β1 and tetraspanin CD151 patched and co-localized but the tetraspanin CD9 remained unchanged. CD9 mAb prevented α6β1 integrin clustering and gamete fusion when added prior to, but not after, zona removal. Antibody-mediated aggregation of integrin α6β1 yielded patches that were bigger and more heterogeneous in mouse oocytes lacking CD9. Moreover, a strong labelling of α6β1 could be observed at the sperm entry point. Altogether, these data show that CD9 controls the redistribution of some membrane proteins including the α6β1 integrin into clusters that may be necessary for gamete fusion.

Keywords

Male, Mice, Knockout, Sperm-Ovum Interactions, Membrane Glycoproteins, Integrin alpha6beta1, Tetraspanin 24, Spermatozoa, Tetraspanin 29, Mice, Antigens, CD, Oocytes, Animals, Humans, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    119
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
119
Top 10%
Top 10%
Top 1%
bronze