Live Imaging of muscle histolysis inDrosophilametamorphosis
Live Imaging of muscle histolysis inDrosophilametamorphosis
Background:The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate.Drosophila melanogastermetamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood.Method:To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprisingin vivoimaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes.Results:In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressorAtrophininhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi ofAMPKα,which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies.Conclusions:Live imaging is a versatile approach to uncover gene functions that are required for the survival of muscle undergoing remodelling, yet are dispensable for other adult muscles. Our approach promises to identify molecular mechanisms that can explain the resilience of muscles to PCD.
- Science and Technology in Atmospheric Research (United States) United States
- Nanyang Technological University Singapore
- Nanyang Technological University
- Starrag
- Starlab Belgium
570, Cathepsin L, 610, Genes, Insect, Models, Biological, Imaging, Three-Dimensional, Animals, Drosophila Proteins, Live imaging, Microscopy, Confocal, Cell Death, Sequence Homology, Amino Acid, Muscles, Adenylate Kinase, Metamorphosis, Biological, Pupa, Reproducibility of Results, Drosophila melanogaster, Phenotype, Larva, Drosophila, RNA Interference, Developmental Biology, Research Article
570, Cathepsin L, 610, Genes, Insect, Models, Biological, Imaging, Three-Dimensional, Animals, Drosophila Proteins, Live imaging, Microscopy, Confocal, Cell Death, Sequence Homology, Amino Acid, Muscles, Adenylate Kinase, Metamorphosis, Biological, Pupa, Reproducibility of Results, Drosophila melanogaster, Phenotype, Larva, Drosophila, RNA Interference, Developmental Biology, Research Article
73 Research products, page 1 of 8
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
