Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2004 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2005
versions View all 2 versions

A Deficiency Screen for Dominant Suppressors of Telomeric Silencing in Drosophila

Authors: James M, Mason; Joshua, Ransom; Alexander Y, Konev;

A Deficiency Screen for Dominant Suppressors of Telomeric Silencing in Drosophila

Abstract

AbstractHeterochromatin is a specialized chromatin structure in chromosomal regions associated with repeated DNA sequences and low concentrations of genes. Formation of heterochromatin is determined in large part by enzymes that modify histones and structural proteins that bind to these modified histones in a cooperative fashion. In Drosophila, mutations in genes that encode heterochromatic proteins are often dominant and increase expression of genes placed into heterochromatic positions. To find components of telomeric heterochromatin in Drosophila, we screened a collection of autosomal deficiencies for dominant suppressors of silencing of a transgene at the telomere of chromosome 2L. While many deficiency chromosomes are associated with dominant suppressors, in the cases tested on chromosome 2 the suppressor mapped to the 2L telomere, rather than the deficiency. We infer that background effects may hamper the search for genes that play a role in telomeric heterochromatin formation and that either very few genes participate in this pathway or mutations in these genes are not dominant suppressors of telomeric position effect. The data also suggest that the 2L telomere region plays a major role in telomeric silencing.

Keywords

Genetic Markers, Recombination, Genetic, Meiosis, Pigmentation, Animals, Chromosome Mapping, Drosophila, Gene Silencing, Telomere, Eye

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
hybrid