A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening
A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening
Summary Understanding the processes that underlie pollen release is a prime target for controlling fertility to enable selective breeding and the efficient production of hybrid crops. Pollen release requires anther opening, which involves changes in the biomechanical properties of the anther wall. In this research, we develop and use a mathematical model to understand how these biomechanical processes lead to anther opening. Our mathematical model describing the biomechanics of anther opening incorporates the bilayer structure of the mature anther wall, which comprises the outer epidermal cell layer, whose turgor pressure is related to its hydration, and the endothecial layer, whose walls contain helical secondary thickening, which resists stretching and bending. The model describes how epidermal dehydration, in association with the thickened endothecial layer, creates forces within the anther wall causing it to bend outwards, resulting in anther opening and pollen release. The model demonstrates that epidermal dehydration can drive anther opening, and suggests why endothecial secondary thickening is essential for this process (explaining the phenotypes presented in the myb26 and nst1nst2 mutants). The research hypothesizes and demonstrates a biomechanical mechanism for anther opening, which appears to be conserved in many other biological situations where tissue movement occurs.
- UNIVERSITY OF OXFORD
- School of Mathematics, University of Manchester United Kingdom
- University of Nottingham United Kingdom
- University of Birmingham United Kingdom
- School of Mathematics University of Birmingham United Kingdom
Dehiscence, Dehydration, Arabidopsis Proteins, Research, Actuation, Arabidopsis, Water, Biomechanical modelling, Flowers, Models, Theoretical, Models, Biological, Biomechanical Phenomena, Plant Epidermis, Anther, Secondary thickening, Phenotype, Mutation, Pollen, Lilium, Transcription Factors
Dehiscence, Dehydration, Arabidopsis Proteins, Research, Actuation, Arabidopsis, Water, Biomechanical modelling, Flowers, Models, Theoretical, Models, Biological, Biomechanical Phenomena, Plant Epidermis, Anther, Secondary thickening, Phenotype, Mutation, Pollen, Lilium, Transcription Factors
1 Research products, page 1 of 1
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
