Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast

Authors: Tomasz J, Proszynski; Robin W, Klemm; Maike, Gravert; Peggy P, Hsu; Yvonne, Gloor; Jan, Wagner; Karol, Kozak; +5 Authors

A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast

Abstract

Recently synthesized proteins are sorted at the trans-Golgi network into specialized routes for exocytosis. Surprisingly little is known about the underlying molecular machinery. Here, we present a visual screen to search for proteins involved in cargo sorting and vesicle formation. We expressed a GFP-tagged plasma membrane protein in the yeast deletion library and identified mutants with altered marker localization. This screen revealed a requirement of several enzymes regulating the synthesis of sphingolipids and ergosterol in the correct and efficient delivery of the marker protein to the cell surface. Additionally, we identified mutants regulating the actin cytoskeleton (Rvs161p and Vrp1p), known membrane traffic regulators (Kes1p and Chs5p), and several unknown genes. This visual screening method can now be used for different cargo proteins to search in a genome-wide fashion for machinery involved in post-Golgi sorting.

Keywords

Sphingolipids, Membrane Glycoproteins, Saccharomyces cerevisiae Proteins, Calcium-Binding Proteins, DNA Mutational Analysis, Genes, Fungal, Green Fluorescent Proteins, Intracellular Signaling Peptides and Proteins, Mutant Chimeric Proteins, Vesicular Transport Proteins, Membrane Proteins, Biological Transport, Saccharomyces cerevisiae, Phenotype, Ergosterol, Transport Vesicles, Gene Library, trans-Golgi Network

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 10%
Top 10%
Top 10%
bronze