Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1993 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1993
versions View all 2 versions

Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5

Authors: K L, Clark; E D, Halay; E, Lai; S K, Burley;

Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5

Abstract

The three-dimensional structure of an HNF-3/fork head DNA-recognition motif complexed with DNA has been determined by X-ray crystallography at 2.5 A resolution. This alpha/beta protein binds B-DNA as a monomer, through interactions with the DNA backbone and through both direct and water-mediated major and minor groove base contacts, inducing a 13 degrees bend. The transcription factor fold is very similar to the structure of histone H5. In its amino-terminal half, three alpha-helices adopt a compact structure that presents the third helix to the major groove. The remainder of the protein includes a twisted, antiparallel beta-structure and random coil that interacts with the minor groove.

Keywords

Models, Molecular, Binding Sites, Base Sequence, Sequence Homology, Amino Acid, Protein Conformation, Molecular Sequence Data, Nuclear Proteins, Peptide Fragments, Rats, DNA-Binding Proteins, Histones, X-Ray Diffraction, Animals, Amino Acid Sequence, Hepatocyte Nuclear Factor 3-gamma, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 0.1%