Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Loss of PKCλ/ι impairs Th2 establishment and allergic airway inflammation in vivo

Authors: Maria T. Diaz-Meco; Jun-Qi Yang; Jorge Moscat; Angeles Duran; Michael Leitges;

Loss of PKCλ/ι impairs Th2 establishment and allergic airway inflammation in vivo

Abstract

The differentiation of T cells along different lineages is central to the control of immunity. Here we have used a conditional gene knockout system to delete PKC λ/ι selectively in activated T cells. With this system we have demonstrated that PKCλ/ι is necessary for T-helper cell (Th2) cytokine production and optimal T-cell proliferation and allergic airway inflammation in vivo. Our data demonstrate that the activation of the transcription factors nuclear factor of activated T cells and NF-κB is impaired in PKCλ/ι-deficient activated T cells. In addition, we present genetic knockout evidence in ex vivo experiments with primary T cells that PKCλ/ι is critical for the control of cell polarity during T-cell activation. Therefore PKCλ/ι emerges as a critical regulator of Th 2 activation.

Keywords

Inflammation, Mice, Knockout, Ovalbumin, Respiratory System, Cell Polarity, Cell Differentiation, Immunoglobulin E, Lymphocyte Activation, Up-Regulation, Isoenzymes, Mice, Th2 Cells, Hypersensitivity, Animals, Cytokines, Protein Kinase C, Cell Proliferation, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze