Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Drug Metabolism and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Drug Metabolism and Pharmacokinetics
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Functional Pleiotropy of Organic Anion Transporting Polypeptide OATP2B1 Due to Multiple Binding Sites

Authors: Yoshiyuki, Shirasaka; Takanori, Mori; Megumi, Shichiri; Takeo, Nakanishi; Ikumi, Tamai;

Functional Pleiotropy of Organic Anion Transporting Polypeptide OATP2B1 Due to Multiple Binding Sites

Abstract

The purpose of this study was to examine whether the presence of multiple binding sites can explain the pleiotropy of substrate recognition by OATP2B1, using Xenopus oocytes expressing OATP2B1. OATP2B1-mediated uptake of estrone-3-sulfate apparently exhibited biphasic saturation kinetics, with Km values of 0.10 ± 0.05 and 29.9 ± 12.1 µM and Vmax values of 14.1 ± 6.4 and 995 ± 273 fmol/min/oocyte for high- and low-affinity sites, respectively. Contribution analysis revealed that transport of estrone-3-sulfate mediated by high- and low-affinity sites on OATP2B1 could be evaluated at the concentrations of 0.005 and 50 µM, respectively. pH-dependence study of OATP2B1-mediated estrone-3-sulfate uptake suggested that high- and low-affinity sites show different pH sensitivity. When the inhibitory effect of 12 compounds on estrone-3-sulfate uptake by high- and low-affinity sites on OATP2B1 was examined, 4 compounds appeared to be inhibitors of the high-affinity site on OATP2B1. Two other compounds appeared to be inhibitors for the low-affinity site and four others were inhibitory at both sites. These results indicated the presence of multiple binding sites on OATP2B1 with different affinity for drugs. Accordingly, it is likely that drug-drug and drug-beverage interactions occur only when two drugs share the same binding site on OATP2B1.

Related Organizations
Keywords

Binding Sites, Estrone, Osmolar Concentration, Organic Anion Transporters, Biological Transport, Hydrogen-Ion Concentration, Flavones, Ligands, Recombinant Proteins, Kinetics, Xenopus laevis, Pharmaceutical Preparations, Membrane Transport Modulators, Oocytes, Animals, Humans, Female, Steroids, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%