Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Inactivation of FIP200 Leads to Inflammatory Skin Disorder, but Not Tumorigenesis, in Conditional Knock-out Mouse Models

Authors: Huijun, Wei; Boyi, Gan; Xiaoyang, Wu; Jun-Lin, Guan;

Inactivation of FIP200 Leads to Inflammatory Skin Disorder, but Not Tumorigenesis, in Conditional Knock-out Mouse Models

Abstract

FIP200 (focal adhesion kinase family interacting protein of 200 kDa) has been shown to interact with other proteins to regulate several intracellular signaling pathways. To study a potential role of FIP200 in tumorigenesis and possibly other disease processes in vivo, we created and analyzed murine mammary tumor virus-Cre-mediated FIP200 conditional knock-out (CKO) mice. We found that deletion of FIP200 in mammary epithelial cells did not result in spontaneous development of breast cancer. Moreover, deletion of FIP200 did not further accelerate or inhibit lymphomagenesis induced by inactivation of p53 in mice. Interestingly, however, FIP200 and p53 double conditional knock-out (dCKO) mice exhibited significant hyperplasia of epidermis (acanthosis), thickening of the cornified layer (hyperkeratosis), and increased vascularity in the dermis. FIP200 CKO mice also showed similar, although less severe, skin defects as dCKO mice. Analyses of primary keratinocytes isolated from dCKO mice did not detect increased proliferation of these cells in vitro, suggesting that epidermis hyperproliferation is not epidermal cell-autonomous but may be a consequence of increased inflammation triggered by immune cells in vivo. Consistent with this possibility, we found infiltration of leukocytes including T cells, macrophages, and granulocytes into the dermis and epidermis, associated with activation of NF-kappaB and increased expression of several proinflammatory cytokines and chemokines in skin of the dCKO mice. We further found that cultured FIP200 KO keratinocytes showed reduced NF-kappaB phosphorylation in response to tumor necrosis factor alpha stimulation, suggesting a paracrine regulation of aberrant NF-kappaB activation in the skin microenviroment of dCKO and FIP200 CKO mice. Together, these results demonstrate that ablation of FIP200, although not promoting tumorigenesis, can lead to skin inflammatory disorders, suggesting a novel function of FIP200 in the maintenance of normal skin homeostasis in vivo.

Related Organizations
Keywords

Inflammation, Keratinocytes, Mice, Knockout, Hyperplasia, Integrases, Blotting, Western, Intracellular Signaling Peptides and Proteins, Autophagy-Related Proteins, Fluorescent Antibody Technique, Mammary Neoplasms, Experimental, Apoptosis, Immunoenzyme Techniques, Disease Models, Animal, Mice, Mammary Tumor Virus, Mouse, Animals, Cytokines, Female, Chemokines, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research