Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Smad4 Decreases the Population of Pancreatic Cancer–Initiating Cells through Transcriptional Repression of ALDH1A1

Authors: Yukari Hoshino; Kohei Miyazono; Daizo Koinuma; Jun Nishida; Shogo Ehata; Yoko Katsuno; Norihiro Kokudo; +1 Authors

Smad4 Decreases the Population of Pancreatic Cancer–Initiating Cells through Transcriptional Repression of ALDH1A1

Abstract

Cancer progression involves a rare population of undifferentiated cancer-initiating cells that have stem cell-like properties for self-renewal capacity and high tumorigenicity. We investigated how maintenance of pancreatic cancer-initiating cells is influenced by Smad4, which is frequently deleted or mutated in pancreatic cancers cells. Smad4 silencing up-regulated the expression of aldehyde dehydrogenase 1A1 (ALDH1A1) mRNA, whereas forced expression of Smad4 in pancreatic cancer cells down-regulated it. Smad4 and ALDH1 expression inversely correlated in some human clinical pancreatic adenocarcinoma tissues, suggesting that ALDH1 in pancreatic cancer cells was associated with decreased Smad4 expression. We then examined whether ALDH1 served as a marker of pancreatic cancer-initiating cells. Pancreatic cancer cells contained ALDH1(hi) cells in 3% to 10% of total cells, with high tumorigenic potential. Because Smad4 is a major mediator of transforming growth factor (TGF)-β family signaling, we investigated the regulatory mechanism of ALDH activity by TGF-β and bone morphogenetic proteins. Treatment with TGF-β attenuated ALDH1(hi) cells in several pancreatic cancer cells, whereas bone morphogenetic protein-4 was not as potent. Biochemical experiments revealed that TGF-β regulated ALDH1A1 mRNA transcription through binding of Smad4 to its regulatory sequence. It appears that TGF-β negatively regulates ALDH1 expression in pancreatic cancer cells in a Smad-dependent manner and in turn impairs the activity of pancreatic cancer-initiating cells.

Keywords

Male, Chromatin Immunoprecipitation, Mice, Inbred BALB C, Reverse Transcriptase Polymerase Chain Reaction, Immunoblotting, Mice, Nude, Retinal Dehydrogenase, Aldehyde Dehydrogenase, Immunohistochemistry, Aldehyde Dehydrogenase 1 Family, Gene Expression Regulation, Neoplastic, Pancreatic Neoplasms, Mice, Cell Line, Tumor, Neoplastic Stem Cells, Animals, Heterografts, Humans, RNA, Small Interfering, Smad4 Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
hybrid