Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus
pmid: 33874636
Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus
• Translocation is shown of phosphorus, nitrogen, potassium and magnesium to a P-deficient host from ectomycorrhizal fungal hyphae. • Mycorrhizal (with Paxillus involutus) and nonmycorrhizal P-deficient spruce (P. abies) seedlings were grown in a two-compartment sand-culture system. Hyphal translocation of nutrients from the inner compartment (penetrated only by hyphae) to the host was measured using mass balance (for N, P and K) or stable isotope (15 N and 25 Mg) methods. • Addition of P to the hyphal compartment strongly stimulated hyphal growth, and this also increased both seedling P status and growth. Hyphae translocated nonlimiting elements in addition to P, contributing 52, 17, 5 and 3-4%, respectively, to total P, N, K or Mg plant uptake. The potential role of the ectomycorrhizal mycelium in K acquisition was demonstrated. Translocation to mycorrhizal seedings of N, K and Mg was strongly reduced when hyphal P-fluxes ceased; this translocation of nonlimiting nutrients depended on simultaneous translocation of P. • The ectomycorrhizal mycelium has an active role in P acquisition from sources not available to roots. Nutrient fluxes within fungal hyphae are interdependent and strong coupling of N, K and Mg fluxes with long-distance P translocation in the mycorrhizal mycelium occurs.
- Helmholtz Association of German Research Centres Germany
- University of Göttingen Germany
- Forschungszentrum Jülich Germany
- Bangor University United Kingdom
12 Research products, page 1 of 2
- 1985IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 1995IsAmongTopNSimilarDocuments
- 1991IsAmongTopNSimilarDocuments
- 1989IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).89 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
