Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radboud Repositoryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2006
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2006
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Medicine
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 7 versions

The methionine synthase reductase 66A>G polymorphism is a maternal risk factor for spina bifida

Authors: van der Linden, I.J.; den Heijer, M.; Afman, L.A.; Gellekink, H.; Vermeulen, S.H.; Kluijtmans, L.A.J.; Blom, H.J.;

The methionine synthase reductase 66A>G polymorphism is a maternal risk factor for spina bifida

Abstract

The methionine synthase reductase (MTRR) enzyme restores methionine synthase (MTR) enzyme activity and therefore plays an essential role in homocysteine remethylation. In some studies, the 66A>G polymorphism in the MTRR gene was associated with increased neural tube defect (NTD) risk. Using a case-control design, we studied the association between the MTRR 66A>G polymorphism and spina bifida risk in 121 mothers, 109 spina bifida patients, 292 control women, and 234 pediatric controls. Possible interactions between the MTRR 66A>G variant and the MTR 2756A>G polymorphism, the MTHFR 677C>T variant, plasma vitamin B12, and plasma methylmalonic acid (MMA) levels were examined in the 121 mothers and 292 control women. Meta-analyses were conducted to set the results of the case-control study in the context of eligible literature on the relation between the MTRR 66A>G variant and NTD risk. Finally, a transmission disequilibrium test was performed for 82 complete mother-father-child triads to test for preferential transmission of the MTRR risk allele. In our case-control study, the MTRR 66A>G polymorphism had no influence on spina bifida risk in children [odds ratio (OR) 0.6, 95% confidence interval (CI) 0.4-1.1]. The MTRR 66GG genotype increased maternal spina bifida risk by 2.1-fold (OR 2.1, 95% CI 1.3-3.3). This risk became more pronounced in combination with the MTHFR 677TT genotype (OR 4.0, 95% CI 1.3-12.5). Moreover, we demonstrate a possible interaction between the MTRR 66GG genotype and high plasma MMA levels (OR 5.5, 95% CI 2.2-13.5). The meta-analyses demonstrated that the maternal MTRR 66GG genotype was associated with an overall 55% (95% CI 1.04-2.30) increase in NTD risk and that the MTRR 66GG genotype did not increase NTD risk in children (OR 0.96, 95% CI 0.46-2.01). These data show that the MTRR 66GG genotype is a maternal risk factor for spina bifida especially when intracellular vitamin B12 status is low.

Country
Netherlands
Keywords

Adult, Male, Adolescent, MTRR, Mothers, IGMD 6: Hormonal regulation, UMCN 2.2: Vascular medicine and diabetes, Methylmalonic acid, IGMD 3: Genomic disorders and inherited multi-system disorders, UMCN 1.5: Interventional oncology, prevention, flavoprotein, Risk Factors, Confidence Intervals, Odds Ratio, Humans, cobalamin, Child, Spina bifida, Spinal Dysraphism, UMCN 5.2: Endocrinology and reproduction, Alleles, Methylenetetrahydrofolate Reductase (NADPH2), TDT, Aged, methylmalonic acid, Polymorphism, Genetic, periconceptional vitamin supplementation, Middle Aged, NCEBP 1: Molecular epidemiology, Ferredoxin-NADP Reductase, Meta-analysis, ONCOL 3: Translational research, Case-Control Studies, Child, Preschool, NCMLS 4: Energy and redox metabolism, Female, NCEBP 14: Cardiovascular diseases, plasma homocysteine, IGMD 5: Health aging / healthy living, EBP 1: Determinants in Health and Disease, neural-tube defects, Methylmalonic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
Green