<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling

GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling
Congenital heart diseases (CHD) occur in nearly 1% of all live births and are the major cause of infant mortality and morbidity. Although an improved understanding of the genetic causes of CHD would provide insight into the underlying pathobiology, the genetic etiology of most CHD remains unknown. Here we show that mutations in the gene encoding the transcription factor GATA6 cause CHD characteristic of a severe form of cardiac outflow tract (OFT) defect, namely persistent truncus arteriosus (PTA). Two different GATA6 mutations were identified by systematic genetic analysis using DNA from patients with PTA. Genes encoding the neurovascular guiding molecule semaphorin 3C (SEMA3C) and its receptor plexin A2 (PLXNA2) appear to be regulated directly by GATA6, and both GATA6 mutant proteins failed to transactivate these genes. Transgenic analysis further suggests that, in the developing heart, the expression of SEMA3C in the OFT/subpulmonary myocardium and PLXNA2 in the cardiac neural crest contributing to the OFT is dependent on GATA transcription factors. Together, our data implicate mutations in GATA6 as genetic causes of CHD involving OFT development, as a result of the disruption of the direct regulation of semaphorin-plexin signaling.
- Keio University Japan
- Tokyo Women's Medical University Japan
Heart Defects, Congenital, Male, Base Sequence, Molecular Sequence Data, Heart, Mice, Transgenic, Nerve Tissue Proteins, Receptors, Cell Surface, Semaphorins, Mice, GATA6 Transcription Factor, Animals, Humans, Female, Signal Transduction
Heart Defects, Congenital, Male, Base Sequence, Molecular Sequence Data, Heart, Mice, Transgenic, Nerve Tissue Proteins, Receptors, Cell Surface, Semaphorins, Mice, GATA6 Transcription Factor, Animals, Humans, Female, Signal Transduction
28 Research products, page 1 of 3
- 2007IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2012IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- IsSupplementTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).216 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%