Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

The Constitutive Expression of Anticoagulant Protein S Is Regulated through Multiple Binding Sites for Sp1 and Sp3 Transcription Factors in the Protein S Gene Promoter

Authors: de Wolf, CJF; Cupers, RMJ; Bertina, RM; Vos, HL;

The Constitutive Expression of Anticoagulant Protein S Is Regulated through Multiple Binding Sites for Sp1 and Sp3 Transcription Factors in the Protein S Gene Promoter

Abstract

Protein S (PS) is a vitamin K-dependent plasma protein that inhibits blood coagulation by serving as a nonenzymatic cofactor for activated protein C in the protein C anticoagulant pathway. Low PS levels are a risk factor for the development of deep venous thrombosis. The regulation of PS levels through transcriptional regulation of the PS gene was investigated in this report. A minimal PS gene promoter 370 bp upstream from the translational initiation codon was sufficient for maximal promoter activity in transient transfections regardless of the cell type. A pivotal role for Sp1 in the constitutive expression of the PS gene was demonstrated through electrophoretic mobility shift assay experiments, transient expression of mutant PS promoter-reporter gene constructs, and chromatin immunoprecipitations in HepG2 cells. At least four Sp-binding sites were identified. The two sites most proximal to the translational start codon were found to be indispensable for PS promoter activity, whereas mutation of the two most distal Sp-binding sites had a negligible influence on basal promoter activity. In addition, all other major promoter-binding proteins that were found by electrophoretic mobility shift assay could be positively identified in supershift assays. We identified binding sites for the hepatocyte-specific forkhead transcription factor FOXA2, nuclear factor Y, and the cAMP-response element-binding protein/activating transcription factor family of transcription factors. Their relevance was investigated using site-directed mutagenesis.

Related Organizations
Keywords

Binding Sites, Carcinoma, Hepatocellular, Base Sequence, Sp1 Transcription Factor, Liver Neoplasms, Molecular Sequence Data, Transfection, Chromatin, Protein S, Sp3 Transcription Factor, CCAAT-Binding Factor, Gene Expression Regulation, Hepatocyte Nuclear Factor 3-beta, Mutagenesis, Site-Directed, Humans, Endothelium, Vascular, Cyclic AMP Response Element-Binding Protein, Promoter Regions, Genetic, HeLa Cells, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
gold