An Agonistic TrkB mAb Causes Sustained TrkB Activation, Delays RGC Death, and Protects the Retinal Structure in Optic Nerve Axotomy and in Glaucoma
doi: 10.1167/iovs.09-5032
pmid: 20357199
An Agonistic TrkB mAb Causes Sustained TrkB Activation, Delays RGC Death, and Protects the Retinal Structure in Optic Nerve Axotomy and in Glaucoma
Brain-derived neurotrophic factor (BDNF) receptors TrkB and p75(NTR) are expressed in the retina. However, exogenous BDNF does not provide retinal ganglion cells (RGCs) with long-lasting neuroprotection in vivo during optic nerve axotomy or in glaucoma rat models of neurodegeneration. The authors set out to answer the hypothesis that a selective TrkB agonist might afford more efficient neuroprotection.Animal models of acute neurodegeneration (complete optic nerve axotomy) and chronic neurodegeneration (ocular hypertension, glaucoma) were used. After intravitreal delivery of test agents or controls, surviving RGCs were quantified. Transient or sustained activation of TrkB receptors in vivo was quantified by Western blot analysis retinal samples for TrkB-phosphotyrosine. Time-dependent changes to the neuronal retinal layers were quantified longitudinally by Fourier domain-optical coherence tomography.The authors show that a selective TrkB agonist caused long-lived TrkB activation and significantly delayed RGC death in these models of acute and chronic retinal injury in vivo. Importantly, using noninvasive retinal imaging, they also show that a selective TrkB agonist caused preservation of the retinal structure in both animal models, with maintenance of the layers comprising neurons and neuronal fibers.In animal models of acute and chronic neurodegeneration, a TrkB agonist affords long-lasting neuroprotection by causing sustained TrkB activation. The use of structural end points could have prognostic value to evaluate neuroprotection. This work contributes to the understanding of neurotrophic mechanisms underlying RGC death in glaucoma and optic nerve axotomy.
- Jewish General Hospital Canada
- Zhongshan Ophthalmic Center, Sun Yat-sen University China (People's Republic of)
- McGill University Canada
- Sun Yat-sen University China (People's Republic of)
- State Key Laboratory of Ophthalmology China (People's Republic of)
Mice, Inbred BALB C, Cell Survival, Antibodies, Monoclonal, Axotomy, Glaucoma, Flow Cytometry, Kidney, Cell Line, Rats, Disease Models, Animal, Mice, Neuroprotective Agents, Antibody Specificity, Acute Disease, Chronic Disease, Optic Nerve Diseases, Animals, Humans, Female, Immunotherapy
Mice, Inbred BALB C, Cell Survival, Antibodies, Monoclonal, Axotomy, Glaucoma, Flow Cytometry, Kidney, Cell Line, Rats, Disease Models, Animal, Mice, Neuroprotective Agents, Antibody Specificity, Acute Disease, Chronic Disease, Optic Nerve Diseases, Animals, Humans, Female, Immunotherapy
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).79 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
