Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Immunologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Immunology
Article . 2005 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions

Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin

Authors: Andrew M, Intlekofer; Naofumi, Takemoto; E John, Wherry; Sarah A, Longworth; John T, Northrup; Vikram R, Palanivel; Alan C, Mullen; +11 Authors

Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin

Abstract

Two seemingly unrelated hallmarks of memory CD8(+) T cells are cytokine-driven proliferative renewal after pathogen clearance and a latent effector program in anticipation of rechallenge. Memory CD8(+) T cells and natural killer cells share cytotoxic potential and dependence on the growth factor interleukin 15. We now show that mice with compound mutations of the genes encoding the transcription factors T-bet and eomesodermin were nearly devoid of several lineages dependent on interleukin 15, including memory CD8(+) T cells and mature natural killer cells, and that their cells had defective cytotoxic effector programming. Moreover, T-bet and eomesodermin were responsible for inducing enhanced expression of CD122, the receptor specifying interleukin 15 responsiveness. Therefore, these key transcription factors link the long-term renewal of memory CD8(+) T cells to their characteristic effector potency.

Keywords

Interleukin-15, Mice, Knockout, Mice, Transgenic, Receptors, Interleukin-2, CD8-Positive T-Lymphocytes, Mice, Inbred C57BL, Mice, Phenotype, Animals, Humans, T-bet Transcription Factor, T-Box Domain Proteins, Immunologic Memory, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 1%