Quantitative Trait Loci Affecting Components of Wing Shape in Drosophila melanogaster
Quantitative Trait Loci Affecting Components of Wing Shape in Drosophila melanogaster
Abstract Two composite multiple regression-interval mapping analyses were performed to identify candidate quantitative trait loci (QTL) affecting components of wing shape in Drosophila melanogaster defined by eight relative warp-based measures. A recombinant inbred line design was used to map QTL for the shape of two intervein regions in the anterior compartment of the wing, using a high resolution map of retrotransposon insertion sites between Oregon-R and Russian 2b. A total of 35 QTL representing up to 23 different loci were identified, many of which are located near components of the epidermal growth factor-Ras signal transduction pathway that regulates vein vs. intervein decision making and vein placement. Over one-half of the loci were detected in both sexes, and just under one-half were detected at two different growth temperatures. Different loci were found to affect aspects of shape in each intervein region, confirming that the shape of the whole wing should be regarded as a compound trait composed of several developmental units. In addition, a reciprocal backcross design was used to map QTL affecting shape in the posterior compartment of the wings of 831 flies, using a molecular map of 16 allele-specific oligohybridization single nucleotide polymorphism (SNP) markers between two divergent inbred lines. A total of 13 QTL were detected and shown to have generally additive effects on separable components of shape, in both sexes. By contrast, 8 QTL that affected wing size in these backcrosses were nearly dominant in their effects. The results confirm at the genetic level that wing shape is regulated independent of wing size and set up the hypothesis that wing shape is regulated in part through the regulation of the length and positioning of wing veins, involving quantitative regulation of the activity of secreted growth factors.
- North Carolina Agricultural and Technical State University United States
- North Carolina State University United States
Drosophila melanogaster, Quantitative Trait, Heritable, Base Sequence, Animals, Wings, Animal, DNA Primers
Drosophila melanogaster, Quantitative Trait, Heritable, Base Sequence, Animals, Wings, Animal, DNA Primers
354 Research products, page 1 of 36
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).115 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
