Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Internalization of Aggrecan G1 Domain Neoepitope ITEGE in Chondrocytes Requires CD44

Authors: Wataru, Ariyoshi; Cheryl B, Knudson; Na, Luo; Amanda J, Fosang; Warren, Knudson;

Internalization of Aggrecan G1 Domain Neoepitope ITEGE in Chondrocytes Requires CD44

Abstract

Degradation of the cartilage proteoglycan aggrecan is one of the earliest events that occurs in association with osteoarthritis. Little is known concerning the fate of the residual N-terminal G1 domains of cleaved aggrecan; domains that remain bound to hyaluronan. In this study, 68-72-kDa bands representative of aggrecan G1 domains containing ITEGE(373) neoepitope were detected within a hyaluronidase-sensitive pool at the cell surface of bovine articular chondrocytes and within a hyaluronidase-insensitive, intracellular pool. To determine the mechanisms that contribute to this distribution, CD44 expression was knocked down by siRNA or function by CD44-DN. Both approaches prevented the retention and internalization of G1-ITEGE. Inhibition of CD44 transit into lipid rafts blocked the endocytosis of G1-ITEGE but not the retention at the cell surface. Chondrocytes derived from CD44 null mice also exhibited limited potential for retention and internalization of G1-VTEGE. The consequence of a lack of chondrocyte-mediated endocytosis of these domains in cartilage of the CD44 null mice was the accumulation of the degradation fragments within the tissue. Additionally, chondrocytes or fibroblasts derived from CD44 null mice exhibited little capacity for retention and internalization of exogenous G1-ITEGE derived from bovine cartilage explants. Bovine or wild type mouse fibroblasts were able to bind and internalize bovine-derived G1-ITEGE. Although several pathways are available for the clearance of these domains, CD44-mediated cellular internalization is the most prominent.

Keywords

Cartilage, Articular, Male, Mice, Inbred BALB C, Binding Sites, Lipoylation, Blotting, Western, Interleukin-1beta, Fibroblasts, Endocytosis, Epitopes, Mice, Cholesterol, Chondrocytes, Hyaluronan Receptors, Membrane Microdomains, Animals, Cattle, Aggrecans, Amino Acid Sequence, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Average
Top 10%
gold