Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hormone Research in ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hormone Research
Article . 2001
versions View all 2 versions

Epidermal Growth Factor Inhibits 8-Br-cAMP-Induced Decidualization of Human Endometrial Stromal Cells

Authors: T, Sakamoto; T, Tanaka; N, Umesaki; S, Ogita;

Epidermal Growth Factor Inhibits 8-Br-cAMP-Induced Decidualization of Human Endometrial Stromal Cells

Abstract

The effects of epidermal growth factor (EGF) on human endometrial stromal cells have not been characterized well, although production of EGF in endometrial epithelial and stromal cells and expression of EGF receptors in endometrial stromal cells have been reported. We investigated the effects of EGF on endometrial cell viability, 8-Br-cAMP-induced stromal decidualization, and prolactin secretion from decidualized endometrial stromal cells using an in vitro decidualization activity assay of human endometrial stromal cells. EGF did not show any significant effects on viable cell numbers of nondecidualized and 8-Br-cAMP-induced decidualized cells. Prolactin release from the 8-Br-cAMP-induced decidualized cells was not affected by EGF. However, EGF dose-dependently inhibited prolactin release from the stromal cells that were in the process of decidualization by co-stimulation with 8-Br-cAMP and EGF, though there was no significant change in viable cell numbers of the 8-Br-cAMP-stimulated decidualizing cells. Flow cytometric analysis revealed that 8-Br-cAMP enhanced EGF receptor expression on the endometrial stromal cells. These results indicate that endometrial EGF inhibits decidualization through autocrine/paracrine mechanisms.

Related Organizations
Keywords

Epidermal Growth Factor, Cell Survival, 8-Bromo Cyclic Adenosine Monophosphate, Receptors, Interleukin-1, Flow Cytometry, Prolactin, ErbB Receptors, Endometrium, Decidua, Humans, Female, Stromal Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average