Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Oncolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Oncology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Oncology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Oncology
Article . 2020
Data sources: DOAJ
versions View all 4 versions

Plasma Epstein-Barr Virus-Deoxyribonucleic Acid Copy Number Predicts Disease Progression in Stage I–III Pulmonary Lymphoepithelioma-Like Carcinoma

Authors: Qi-Wen Li; Bo Qiu; Wan-Ming Hu; Su-Ping Guo; Ying-Jia Wu; Yu-Jia Zhu; Nan Hu; +7 Authors

Plasma Epstein-Barr Virus-Deoxyribonucleic Acid Copy Number Predicts Disease Progression in Stage I–III Pulmonary Lymphoepithelioma-Like Carcinoma

Abstract

Purpose: To investigate the predictive values of plasma Epstein-Barr Virus (EBV)- deoxyribonucleic acid (DNA) copy number on disease progression and survival in stage I-III pulmonary lymphoepithelioma-like carcinoma (LELC). Patients and Methods: Patients with pathologically confirmed, initially diagnosed or locally recurrent stage I-III pulmonary LELC, who received locally radical treatment and had plasma EBV-DNA results, were retrospectively reviewed. Risk factors of progression-free survival (PFS) and overall survival (OS) were assessed, including the predictive value of pre- and post-treatment EBV-DNA levels. The EBV-DNA change during follow-up was analyzed to determine its association with tumor progression and survival. Results: A total of 102 patients were included in analysis. Eighty-eight patients had initially-diagnosed and 14 had locally recurrent disease. There were 33 patients treated with radical surgery, 55 with definite radiotherapy and 14 with both. EBV-DNA was tested pre-treatment (N = 66), post-treatment (N = 93) and/or during follow-up (N = 58). Forty-one patients had complete EBV-DNA results of all three time points. The overall 2-year PFS and OS were 66.3 and 96.0%, respectively. Pre-treatment EBV-DNA copy number > 10,000 copies/mL was a risk factor of PFS (2-year PFS, > 10,000 vs. ≤ 10,000 copies/mL, 37.2 vs. 75.1%, p = 0.007). Positive post-treatment EBV-DNA also indicated a worse PFS in univariable (2-year PFS, > 0 vs. 0 copy/mL, 25.6 vs. 76.8%, p 1,000 vs. ≤ 1,000 copies/mL, 72.9 vs. 100%, p < 0.001). Conclusions: Regular testing of EBV-DNA is suggested for pulmonary LELC to predict disease progression. If EBV-DNA copy number was increasing and beyond 1,000 copies/mL during follow-up, intensive radiologic evaluations are recommended.

Related Organizations
Keywords

monitoring, Oncology, Epstein-Barr virus, biomarker, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, tumor progression, pulmonary lymphoepithelioma-like carcinoma, RC254-282

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Green
gold