Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2015
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2014
Data sources: DOAJ
versions View all 4 versions

Syd/JIP3 and JNK Signaling Are Required for Myonuclear Positioning and Muscle Function

Authors: Victoria K Schulman; Eric S Folker; Jonathan N Rosen; Mary K Baylies;

Syd/JIP3 and JNK Signaling Are Required for Myonuclear Positioning and Muscle Function

Abstract

Highlighting the importance of proper intracellular organization, many muscle diseases are characterized by mispositioned myonuclei. Proper positioning of myonuclei is dependent upon the microtubule motor proteins, Kinesin-1 and cytoplasmic Dynein, and there are at least two distinct mechanisms by which Kinesin and Dynein move myonuclei. The motors exert forces both directly on the nuclear surface and from the cell cortex via microtubules. How these activities are spatially segregated yet coordinated to position myonuclei is unknown. Using Drosophila melanogaster, we identified that Sunday Driver (Syd), a homolog of mammalian JNK-interacting protein 3 (JIP3), specifically regulates Kinesin- and Dynein-dependent cortical pulling of myonuclei without affecting motor activity near the nucleus. Specifically, Syd mediates Kinesin-dependent localization of Dynein to the muscle ends, where cortically anchored Dynein then pulls microtubules and the attached myonuclei into place. Proper localization of Dynein also requires activation of the JNK signaling cascade. Furthermore, Syd functions downstream of JNK signaling because without Syd, JNK signaling is insufficient to promote Kinesin-dependent localization of Dynein to the muscle ends. The significance of Syd-dependent myonuclear positioning is illustrated by muscle-specific depletion of Syd, which impairs muscle function. Moreover, both myonuclear spacing and locomotive defects in syd mutants can be rescued by expression of mammalian JIP3 in Drosophila muscle tissue, indicating an evolutionarily conserved role for JIP3 in myonuclear movement and highlighting the utility of Drosophila as a model for studying mammalian development. Collectively, we implicate Syd/JIP3 as a novel regulator of myogenesis that is required for proper intracellular organization and tissue function.

Keywords

Cell Nucleus, Muscle Cells, MAP Kinase Signaling System, Muscles, Dyneins, Kinesins, Membrane Proteins, QH426-470, Protein Transport, Drosophila melanogaster, Genetics, Animals, Drosophila Proteins, Carrier Proteins, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Green
gold