Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell
Article . 2004
versions View all 4 versions

Posttranslational Regulation of Drosophila PERIOD Protein by Protein Phosphatase 2A

Authors: Sathyanarayanan, Sriram; Zheng, Xiangzhong; Xiao, Rui; Sehgal, Amita;

Posttranslational Regulation of Drosophila PERIOD Protein by Protein Phosphatase 2A

Abstract

The posttranscriptional mechanisms that control the cycling of circadian clock protein levels are not known. Here we demonstrate a role for protein phosphatase 2A (PP2A) in the cyclic expression of the PER protein. PP2A regulatory subunits TWS and WDB target PER and stabilize it in S2 cells. In adult fly heads, expression of tws cycles robustly under control of the circadian clock. Hypomorphic tws mutants show delayed accumulation of PER, while overexpression of tws in clock neurons produces shorter, weaker rhythms. Reduction of PP2A activity reduces PER expression in central clock neurons and results in long periods and arrhythmia. In addition, overexpression of the PP2A catalytic subunit results in loss of behavioral rhythms and constitutive nuclear expression of PER. PP2A also affects PER phosphorylation in vitro and in vivo. We propose that the posttranslational mechanisms that drive cycling of PER require the rhythmic expression of PP2A.

Related Organizations
Keywords

Cell Nucleus, Neurons, Insecta, Dose-Response Relationship, Drug, Models, Genetic, Biochemistry, Genetics and Molecular Biology(all), Blotting, Western, Nuclear Proteins, Period Circadian Proteins, Immunohistochemistry, Models, Biological, Cell Line, Circadian Rhythm, Gene Expression Regulation, Catalytic Domain, Mutation, Animals, Drosophila Proteins, Drosophila, Marine Toxins, Oxazoles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    228
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
228
Top 10%
Top 1%
Top 1%
hybrid