Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pontificia Universid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2020
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
DBLP
Article
Data sources: DBLP
versions View all 4 versions

Calculation of accurate interatomic contact surface areas for the quantitative analysis of non-bonded molecular interactions

Authors: Judemir Ribeiro; Carlos Ríos-Vera; Francisco Melo 0001; Andreas Schüller;

Calculation of accurate interatomic contact surface areas for the quantitative analysis of non-bonded molecular interactions

Abstract

Abstract Summary Intra- and intermolecular contact surfaces are routinely calculated for a large array of applications in bioinformatics but are typically approximated from differential solvent accessible surface area calculations and not calculated directly. These approximations do not properly take the effects of neighboring atoms into account and tend to deviate considerably from the true contact surface. We implemented an extension of the original Shrake-Rupley algorithm to accurately estimate interatomic contact surface areas of molecular structures and complexes. Our extended algorithm is able to calculate the contact area of an atom to all nearby atoms by directly calculating overlapping surface patches, taking into account the possible shielding effects of neighboring atoms. Here, we present a versatile software tool and web server for the calculation of contact surface areas, as well as buried surface areas and solvent accessible surface areas (SASA) for different types of biomolecules, such as proteins, nucleic acids and small organic molecules. Detailed results are provided in tab-separated values format for analysis and Protein Databank files for visualization. Direct contact surface area calculation resulted in improved accuracy in a benchmark with a non-redundant set of 245 protein–DNA complexes. SASA-based approximations underestimated protein–DNA contact surfaces on average by 40%. This software tool may be useful for surface-based intra- and intermolecular interaction analyses and scoring function development. Availability and implementation A web server, stand-alone binaries for Linux, MacOS and Windows and C++ source code are freely available from http://schuellerlab.org/dr_sasa/. Supplementary information Supplementary data are available at Bioinformatics online.

Country
Chile
Keywords

570, Biología, Proteins, DNA, 03 Good health and well-being, 530, Applications Notes, 03 Salud y bienestar, Solvents, Algorithms, Software

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 1%
Top 10%
Top 10%
Green
gold