Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
Data sources: PubMed Central
Journal of Experimental Botany
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity

Authors: Lim, PO; Lee, IC; Kim, J; Kim, HJ; Ryu, JS; Woo, HR; Nam, HG;

Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity

Abstract

Auxin regulates a variety of physiological and developmental processes in plants. Although auxin acts as a suppressor of leaf senescence, its exact role in this respect has not been clearly defined, aside from circumstantial evidence. It was found here that ARF2 functions in the auxin-mediated control of Arabidopsis leaf longevity, as discovered by screening EMS mutant pools for a delayed leaf senescence phenotype. Two allelic mutations, ore14-1 and 14-2, caused a highly significant delay in all senescence parameters examined, including chlorophyll content, the photochemical efficiency of photosystem II, membrane ion leakage, and the expression of senescence-associated genes. A delay of senescence symptoms was also observed under various senescence-accelerating conditions, where detached leaves were treated with darkness, phytohormones, or oxidative stress. These results indicate that the gene defined by these mutations might be a key regulatory genetic component controlling functional leaf senescence. Map-based cloning of ORE14 revealed that it encodes ARF2, a member of the auxin response factor (ARF) protein family, which modulates early auxin-induced gene expression in plants. The ore14/arf2 mutation also conferred an increased sensitivity to exogenous auxin in hypocotyl growth inhibition, thereby demonstrating that ARF2 is a repressor of auxin signalling. Therefore, the ore14/arf2 lesion appears to cause reduced repression of auxin signalling with increased auxin sensitivity, leading to delayed senescence. Altogether, our data suggest that ARF2 positively regulates leaf senescence in Arabidopsis.

Related Organizations
Keywords

EXPRESSION, leaf longevity, leaf senescence, Arabidopsis, PROTEIN, AUX/IAA, Gene Expression Regulation, Plant, ARF2, CYTOKININ, TRANSCRIPTION, OXIDATIVE STRESS, Cellular Senescence, IDENTIFICATION, Indoleacetic Acids, Arabidopsis Proteins, PATHWAYS, Plants, Genetically Modified, Research Papers, Plant Leaves, Repressor Proteins, Ageing, SENESCENCE-ASSOCIATED GENES, ARABIDOPSIS-THALIANA, auxin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    224
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
224
Top 1%
Top 10%
Top 1%
Green
hybrid