Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Neurolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Neurology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury

Authors: Joo-Yong, Lee; Jung-Hwan, Kim; Richard D, Palmiter; Jae-Young, Koh;

Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury

Abstract

Vesicular zinc was initially considered the sole source of toxic intraneuronal zinc accumulation in response to acute brain injury, but recent evidence suggests that additional sources also exist. Because metallothioneins (MTs) can bind and release zinc, we examined the possibility that the brain-specific form, MT-III, is such a zinc source. After kainate-induced seizures, cytoplasmic zinc accumulation and neuronal death in the hippocampal CA1 region and the thalamus were substantially lower in Mt3-null mice than in wild-type mice. Furthermore, compared with zinc transporter 3 (Znt3)-null mice, Znt3/Mt3 double-null mice exhibited further reductions in neuronal death in CA1 following kainate-induced seizures. Similar reductions in zinc accumulation and neuronal death in hippocampal CA1 and the dentate gyrus in Mt3-null mice were observed in a sodium nitroprusside model of acute brain injury. In contrast to CA1, more neuronal death occurred after kainate-induced seizures in CA3 of Mt3-null mice. These results suggest that intracellular zinc release from MT-III may contribute substantially to zinc-mediated neuronal death in certain brain areas, including the hippocampal CA1 region and the thalamus.

Related Organizations
Keywords

Male, Mice, Knockout, Nitroprusside, Kainic Acid, Cell Death, Genotype, Reverse Transcriptase Polymerase Chain Reaction, Cell Count, Nerve Tissue Proteins, Hippocampus, Immunohistochemistry, Metallothionein 3, Mice, Excitatory Amino Acid Agonists, In Situ Nick-End Labeling, Animals, Nitric Oxide Donors, Edetic Acid, Chelating Agents, Injections, Intraventricular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 10%
Top 10%
Top 1%