Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Cell
Article . 2006
versions View all 2 versions

HISTONE DEACETYLASE19 Is Involved in Jasmonic Acid and Ethylene Signaling of Pathogen Response in Arabidopsis

Authors: Changhe, Zhou; Lin, Zhang; Jun, Duan; Brian, Miki; Keqiang, Wu;

HISTONE DEACETYLASE19 Is Involved in Jasmonic Acid and Ethylene Signaling of Pathogen Response in Arabidopsis

Abstract

Histone acetylation is modulated through the action of histone acetyltransferases and deacetylases, which play key roles in the regulation of eukaryotic gene expression. Previously, we have identified a yeast histone deacetylase REDUCED POTASSIUM DEPENDENCY3 (RPD3) homolog, HISTONE DEACETYLASE19 (HDA19) (AtRPD3A), in Arabidopsis thaliana. Here, we report further study of the expression and function of HDA19. Analysis of Arabidopsis plants containing the HDA19:beta-glucuronidase fusion gene revealed that HDA19 was expressed throughout the life of the plant and in most plant organs examined. In addition, the expression of HDA19 was induced by wounding, the pathogen Alternaria brassicicola, and the plant hormones jasmonic acid and ethylene. Using green fluorescent protein fusion, we demonstrated that HDA19 accumulated in the nuclei of Arabidopsis cells. Overexpression of HDA19 in 35S:HDA19 plants decreased histone acetylation levels, whereas downregulation of HDA19 in HDA19-RNA interference (RNAi) plants increased histone acetylation levels. In comparison with wild-type plants, 35S:HDA19 transgenic plants had increased expression of ETHYLENE RESPONSE FACTOR1 and were more resistant to the pathogen A. brassicicola. The expression of jasmonic acid and ethylene regulated PATHOGENESIS-RELATED genes, Basic Chitinase and beta-1,3-Glucanase, was upregulated in 35S:HDA19 plants but downregulated in HDA19-RNAi plants. Our studies provide evidence that HDA19 may regulate gene expression involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis.

Keywords

Arabidopsis Proteins, Glucan Endo-1,3-beta-D-Glucosidase, Recombinant Fusion Proteins, Chitinases, Arabidopsis, Down-Regulation, Nuclear Proteins, Cyclopentanes, Ethylenes, Gene Expression Regulation, Enzymologic, Histone Deacetylases, Immunity, Innate, DNA-Binding Proteins, Gene Expression Regulation, Plant, RNA Interference, Oxylipins, Plant Diseases, Plant Proteins, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    398
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
398
Top 1%
Top 1%
Top 1%
bronze