Powered by OpenAIRE graph

ISG15-modification of the Arp2/3 complex restricts pathogen spread

Authors: Yifeng Zhang; Brittany Ripley; Wei Ouyang; Miranda Sturtz; Ellen Upton; Emma Luhmann; Madeleine Vessely; +13 Authors

ISG15-modification of the Arp2/3 complex restricts pathogen spread

Abstract

SummaryThe ubiquitin-like protein, ISG15, can act as a cytokine or can covalently modify host and pathogen-derived proteins. The consequences of ISG15 modification on substrate fate remain unknown. Here we reveal that ISGylation of the Arp2/3 complex slows actin filament formation and stabilizes Arp2/3 dependent structures including cortical actin and lamella. When properly controlled, this serves as an antibacterial and antiviral host defense strategy to directly restrict actin-mediated pathogen spread. However,Listeria monocytogenestakes advantage in models of dysregulated ISGylation, leading to increased mortality due to augmented spread. The underlying molecular mechanism responsible for the ISG15-dependent impact on actin-based motility is due to failed bacterial separation after division. This promotes spread by enabling the formation of multi-headed bacterial “bazookas” with stabilized comet tails that can disseminate deeper into tissues. A bacterial mutant that cannot recruit Arp2/3 or a non-ISGylatable mutant of Arp3 is sufficient to rescue slowed comet tail speed and restrict spread. Importantly, ISG15-deficient neonatal mice have aberrant epidermal epithelia characterized by keratinocytes with diffuse cortical actin, which could underlie observed defects in wound healing in human patients who lack ISG15. Ultimately, our discovery links host innate immune responses to cytoskeletal dynamics with therapeutic implications for viral infection and metastasis.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
SciLifeLab