Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Immun...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2021 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref

Tipifarnib enhances eradication of acute myeloid leukemia by altering CXCL12/CXCR4 signaling in AML and by modifying the bone marrow microenvironment

Authors: Rosalie Sterner; Lauren E Greif; Rehan Khan; Tina Kwok; Kevin L Peterson; Scott H Kaufmann; Linda Kessler; +3 Authors

Tipifarnib enhances eradication of acute myeloid leukemia by altering CXCL12/CXCR4 signaling in AML and by modifying the bone marrow microenvironment

Abstract

Abstract The prognosis of acute myeloid leukemia (AML) remains poor in part due to the leukemic bone marrow microenvironment. Our lab has found that CXCL12, a chemokine abundant within the leukemic bone marrow microenvironment, induces apoptosis of AML cells expressing CXCR4, the receptor for CXCL12. However, this CXCL12/CXCR4-induced apoptosis is inhibited by differentiating osteoblasts, which protect AML cells from apoptosis in the bone marrow. Tipifarnib is a farnesyltransferase inhibitor shown to increase progression-free survival in AML patients that express high levels of CXCL12. Here, we report that tipifarnib inhibits the CXCL12/CXCR4-directed migration of AML cells via an ERK independent pathway. Furthermore, tipifarnib enhances CXCL12/CXCR4-mediated AML cell apoptosis via a mechanism that alters expression of apoptosis-regulating proteins. In addition, tipifarnib disrupts AML protection by osteoblasts, increasing AML cell apoptosis. Tipifarnib inhibits the osteoblast-mediated protection of AML cells via disrupting COL1A1 and TNAP, proteins essential for extracellular matrix production. In conclusion, tipifarnib alters the bone marrow microenvironment which is predicted to enhance eradication of AML via inhibiting CXCL12/CXCR4 directed cellular migration of AML cells, reducing the protective effects of differentiating osteoblasts by disrupting matrix protection proteins, and increasing CXCL12/CXCR4-mediated apoptosis.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average