Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Immun...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2020 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref

Degranulation-enhanced presynaptic membrane packing protects NK cells from perforin-mediated autolysis

Authors: Yu Li; Jordan Scott Orange;

Degranulation-enhanced presynaptic membrane packing protects NK cells from perforin-mediated autolysis

Abstract

Abstract NK cells are resistant to autolysis when they kill a target cell using perforin secretion into the lytic immunological synapse. Perforin makes pores in target cell membranes allowing delivery of pro-apoptotic enzymes. Despite the fact that the perforin-containing organelles (lytic granules) are released in close range to both the NK and target cell, the NK cell membrane is protected. How NK cells avoid autolysis during degranulation is perplexing. We demonstrate that NK cells are protected from perforin by their densely packed presynaptic membranes. When treated with 7-ketocholesterol lipid packing is reduced in NK cells, making them susceptible to perforin mediated autolysis after degranulation. Using advanced imaging, we showed that lytic granules themselves have endogenously densely packed membranes. Importantly, during degranulation lytic granule-cell membrane fusion further reinforces local presynaptic membrane packing. This provides enhanced membrane protection at the specific sites of degranulation where NK cells face maximum local concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line utilizes the same strategy to evade NK cellmediated killing. These cells are perforin-resistant owing to a densely packed postsynaptic membrane. By disrupting membrane packing, we effectively switched them to an NK-susceptible state. Overall, we reveal an unexpected role for lipid membranes in NK cell functionality and that degranulation uses lytic granule membrane packing to create local “shields” against autolysis. Furthermore, lipid membrane modulation could alter the susceptibility of perforin-resistant cancer cells and should be considered in cytotoxic cell therapies.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research