<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
CompOSE reference manual

CompOSE reference manual
Abstract CompOSE (CompStar Online Supernovae Equations of State) is an online repository of equations of state (EoS) for use in nuclear physics and astrophysics, e.g., in the description of compact stars or the simulation of core-collapse supernovae and neutron-star mergers, see . The main services, offered via the website, are: a collection of data tables in a flexible and easily extendable data format for different EoS types and related physical quantities with extensive documentation and referencing; software for download to extract and to interpolate these data and to calculate additional quantities; webtools to generate EoS tables that are customized to the needs of the users and to illustrate dependencies of various EoS quantities in graphical form. This manual is an update of previous versions that are available on the CompOSE website, at , and that was originally published in the journal “Physics of Particles and Nuclei” with . It contains a detailed description of the service, containing a general introduction as well as instructions for potential contributors and for users. Short versions of the manual for EoS users and providers will also be available as separate publications. Graphical Abstract
- Paris Observatory France
- Institute of Science Tokyo Japan
- Helmholtz Association of German Research Centres Germany
- University of Pune India
- Kent State University, East Liverpool United States
200 Research products, page 1 of 20
- 2024Documents
- 2024Documents
- 2017IsOriginalFormOf
- 2024Documents
- 2024Documents
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%