Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Doctoral thesis . 2011
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Doctoral thesis . 2020
License: CC BY NC ND
versions View all 3 versions

Molecular mechanisms underlying the regulation of o-epithelial sodium channel (o-ENaC) function

Authors: Wesch, Diana L;

Molecular mechanisms underlying the regulation of o-epithelial sodium channel (o-ENaC) function

Abstract

The epithelial sodium channel (ENaC) is a heteromultimeric Na+ selective ion channel member of the ENaC/degenerins family of non-voltage gated ion channels. Canonically, ENaC is composed by three analogous subunits ¿, ß and ¿ and represents the rate-limiting step of Na+-reabsorption across tight epithelia. Another subunit, named ¿, is expressed in the nervous system of primates, where its role and regulation are unknown. The ¿-subunit can substitute ¿ and form functional channels either alone or with ß and ¿. ¿-ENaC has been proposed to participate in the transduction of ischemic signals during hypoxia and inflammation. ¿-ENaC exists in two isoforms, ¿1 and ¿2. Pyramidal neurons of the human cortex express either ¿1 or ¿2, with few cells co-expressing both isoforms, which suggest that they may play specific physiological roles. Heterologous expression of ¿1 in Xenopus oocytes led to ~2.5 fold more amiloride-sensitive current than ¿2. The difference in whole-cell current is based on differential plasma membrane abundance between isoforms. Two sequences in the ¿2 N-terminus independently reduced channel abundance in the membrane based on altered insertion rates and without involvement of PY motifs. Since Dynasore did not inhibit ¿-ENaC endocytosis, it is concluded that ¿-ENaC undergoes clathrin-independent endocytosis as opposed to ¿ß¿-ENaC. ¿ß¿-ENaC in the distal nephron is regulated by the serum- and glucocorticoid-induced kinase 1 (SGK1) and a neuronal-specific isoform, SGK1.1, was found to regulate asid sensing ion channel 1 (ASIC1), another member of the ENaC/degenerins family. Here is shown that SGK1.1 is involved in ¿-ENaC regulation. Co-expression of SGK1.1 with ¿-ENaC in Xenopus oocytes leads to enhanced amiloride-sensitive currents when compared to ¿-ENaC currents alone. This effect does not require a PY motif and depends on SGK1.1 phosphorylation activity and binding to phosphatidylinositol 4,5-bisphosphate (PIP2). Further, activation of Phospholipase C abrogates SGK1.1 modulation of ¿-ENaC

Related Organizations
Keywords

Cartílagos

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 59
    download downloads 71
  • 59
    views
    71
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
59
71
Green
Related to Research communities
STARS EU