Downloads provided by UsageCountsMolecular mechanisms underlying the regulation of o-epithelial sodium channel (o-ENaC) function
Molecular mechanisms underlying the regulation of o-epithelial sodium channel (o-ENaC) function
The epithelial sodium channel (ENaC) is a heteromultimeric Na+ selective ion channel member of the ENaC/degenerins family of non-voltage gated ion channels. Canonically, ENaC is composed by three analogous subunits ¿, ß and ¿ and represents the rate-limiting step of Na+-reabsorption across tight epithelia. Another subunit, named ¿, is expressed in the nervous system of primates, where its role and regulation are unknown. The ¿-subunit can substitute ¿ and form functional channels either alone or with ß and ¿. ¿-ENaC has been proposed to participate in the transduction of ischemic signals during hypoxia and inflammation. ¿-ENaC exists in two isoforms, ¿1 and ¿2. Pyramidal neurons of the human cortex express either ¿1 or ¿2, with few cells co-expressing both isoforms, which suggest that they may play specific physiological roles. Heterologous expression of ¿1 in Xenopus oocytes led to ~2.5 fold more amiloride-sensitive current than ¿2. The difference in whole-cell current is based on differential plasma membrane abundance between isoforms. Two sequences in the ¿2 N-terminus independently reduced channel abundance in the membrane based on altered insertion rates and without involvement of PY motifs. Since Dynasore did not inhibit ¿-ENaC endocytosis, it is concluded that ¿-ENaC undergoes clathrin-independent endocytosis as opposed to ¿ß¿-ENaC. ¿ß¿-ENaC in the distal nephron is regulated by the serum- and glucocorticoid-induced kinase 1 (SGK1) and a neuronal-specific isoform, SGK1.1, was found to regulate asid sensing ion channel 1 (ASIC1), another member of the ENaC/degenerins family. Here is shown that SGK1.1 is involved in ¿-ENaC regulation. Co-expression of SGK1.1 with ¿-ENaC in Xenopus oocytes leads to enhanced amiloride-sensitive currents when compared to ¿-ENaC currents alone. This effect does not require a PY motif and depends on SGK1.1 phosphorylation activity and binding to phosphatidylinositol 4,5-bisphosphate (PIP2). Further, activation of Phospholipase C abrogates SGK1.1 modulation of ¿-ENaC
- University of La Laguna Spain
Cartílagos
Cartílagos
10 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2023IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 59 download downloads 71 - 59views71downloads
Views provided by UsageCounts
Downloads provided by UsageCounts
