The yeast Snt2 protein helps coordinate the transcriptional response to hydrogen-peroxide mediated oxidative stress (H2O2)
The yeast Snt2 protein helps coordinate the transcriptional response to hydrogen-peroxide mediated oxidative stress (H2O2)
Snt2 is a yeast chromatin-interacting protein whose function has not been well characterized, that was recently shown to associate with Ecm5 and the Rpd3 deacetylase. Using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), we show that in response to H2O2, Snt2 and Ecm5 colocalize to promoters of genes involved in various aspects of the environmental stress response. By integrating these ChIP-seq results with expression analysis, we identify a key set of target genes that require Snt2 for proper expression after H2O2 stress. Finally, by mapping Snt2 and Ecm5 localization before and after rapamycin treatment, we identify a subset of H2O2-specific Snt2 and Ecm5 target promoters that are also targeted in response to rapamycin. Our results establish a function for Snt2 in regulating transcriptional changes in response to oxidative stress, and suggest Snt2 may have a role in additional stress pathways. Crosslinking ChIP analysis to identify sites of Snt2 or Ecm5 genomic localization before, 0.5 hours after, or 4 hours after treatment with H2O2 (final concentration 0.4 mM). Snt2 and Ecm5 were genomically tagged with a 13Myc tag at their C termini. ChIPs were performed using a Myc antibody on either Snt2-Myc or Ecm5-Myc strains, or on an untagged wildtype strain (BY4741) as a control. Inputs and ChIPs from untagged strain were sequenced as controls.
Genomics
Genomics
7 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
