A retrotransposon-driven Dicer variant enhances endogenous RNAi in mouse oocytes
A retrotransposon-driven Dicer variant enhances endogenous RNAi in mouse oocytes
Mammals have one Dicer gene required for biogenesis of small RNAs in microRNA (miRNA) and RNA interference (RNAi) pathways. Yet, endogenous RNAi is highly active in oocytes but not in somatic cells. Here, we provide a mechanistical explanation for high RNAi activity in mouse oocytes. The main Dicer isoform in oocytes is transcribed from an intronic MT-C retrotransposon, which functions as a promoter of an oocyte-specific Dicer isoform (denoted DicerO). DicerO lacks an N-terminal helicase domain and has a higher cleavage activity than the full-length Dicer from somatic cells. DicerO can rescue the miRNA pathway and, in addition, it efficiently produces small RNAs from long dsRNA substrates. Thus, control of endogenous RNAi activity in mice occurs via alternative Dicer isoform and the phylogenetic origin of DicerO demonstrates evolutionary plasticity of RNA silencing pathways. NIH3T3 cells or mouse embryonic stem cells expressing oocyte-specific or somatic form of Dicer were transiently transfected with a plasmid expressing long double-stranded RNA (within the 3-UTR of EGFP reporter) or left without transfection for controls.
Transcriptomics
Transcriptomics
2 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
