Powered by OpenAIRE graph

Acetylcholine-stimulated [3H]GABA release from mouse brain synaptosomes is modulated by alpha4beta2 and alpha4alpha5beta2 nicotinic receptor subtypes.

Authors: Tristan D, McClure-Begley; Nathan M, King; Allan C, Collins; Jerry A, Stitzel; Jeanne M, Wehner; Christopher M, Butt;

Acetylcholine-stimulated [3H]GABA release from mouse brain synaptosomes is modulated by alpha4beta2 and alpha4alpha5beta2 nicotinic receptor subtypes.

Abstract

Nicotinic acetylcholine receptor (nAChR) agonists stimulate the release of GABA from GABAergic nerve terminals, but the nAChR subtypes that mediate this effect have not been elucidated. The studies reported here used synaptosomes derived from the cortex, hippocampus, striatum, and thalamus of wild-type and alpha4-, alpha5-, alpha7-, beta2-, and beta4-null mutant mice to identify nAChR subtypes involved in acetylcholine (ACh)-evoked GABA release. Null mutation of genes encoding the alpha4 or beta2 subunits resulted in complete loss of ACh-stimulated [(3)H]GABA release in all four brain regions. In contrast, alpha5 gene deletion exerted a small but significant decrease in maximal ACh-evoked [(3)H]GABA release in hippocampus and striatum, with a more profound effect in cortex. Acetylcholine-stimulated [(3)H]GABA release from thalamic synaptosomes was not significantly affected by alpha5 gene deletion. No effect was detected in the four brain regions examined in alpha7- or beta4-null mutant mice. Further analysis of ACh-evoked [(3)H]GABA release revealed biphasic concentration-response relationships in the four brain regions examined from all wild-type animals and in alpha5 null mutant mice. Moreover, a selective reduction in the maximum response of the high-affinity component was apparent in alpha5-null mutant mice. The results demonstrate that alpha4beta2-type nAChRs are critical for ACh-stimulated [(3)H]GABA release from all four brain regions examined. In addition, the results suggest that alpha5-containing receptors on GABAergic nerve terminals comprise a fraction of the high ACh-sensitivity component of the concentration-response curve and contribute directly to the ability of nicotinic agonists to evoke GABA release in these regions.

Related Organizations
Keywords

Cerebral Cortex, Male, Mice, Knockout, Brain, Receptors, Nicotinic, Hippocampus, Acetylcholine, Corpus Striatum, Mice, Inbred C57BL, Mice, Protein Subunits, Thalamus, Animals, Female, Gene Deletion, gamma-Aminobutyric Acid, Synaptosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 1%
Related to Research communities