Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

The identification of two Drosophila K homology domain proteins. Kep1 and SAM are members of the Sam68 family of GSG domain proteins.

Authors: M, Di Fruscio; T, Chen; S, Bonyadi; P, Lasko; S, Richard;

The identification of two Drosophila K homology domain proteins. Kep1 and SAM are members of the Sam68 family of GSG domain proteins.

Abstract

Sam68 is a member of a growing family of RNA-binding proteins that contains an extended K homology (KH) domain embedded in a larger domain called the GSG (GRP33, Sam68, GLD1) domain. To identify GSG domain family members, we searched data bases for expressed sequence tags encoding related portions of the Sam68 KH domain. Here we report the identification of two novel Drosophila KH domain proteins, which we termed KEP1 (KH encompassing protein) and SAM. SAM bears sequence identity with mammalian Sam68 and may be the Drosophila Sam68 homolog. We demonstrate that SAM, KEP1, and the recently identified Drosophila Who/How are RNA-binding proteins that are able to self-associate into homomultimers. The GSG domain of KEP1 and SAM was necessary to mediate the RNA binding and self-association. To elucidate the cellular roles of these proteins, SAM, KEP1, and Who/How were expressed in mammalian and Drosophila S2 cells. KEP1 and Who/How were nuclear and SAM was cytoplasmic. The expression of KEP1 and SAM, but not Who/How, activated apoptotic pathways in Drosophila S2 cells. The identification of KEP1 and SAM implies that a large GSG domain protein family exists and helps redefine the boundaries of the GSG domain. Taken together, our data suggest that KEP1 and SAM may play a role in the activation or regulation of apoptosis and further implicate the GSG domain in RNA binding and oligomerization.

Keywords

Molecular Sequence Data, RNA-Binding Proteins, Apoptosis, Transfection, Cell Line, Alternative Splicing, src-Family Kinases, Animals, Drosophila, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Average
Top 10%
Top 10%
gold