Powered by OpenAIRE graph

Identification of HLA-A*0201-restricted CD8+ T-cell epitope C₆₄₋₇₂ from hepatitis B virus core protein.

Authors: Qiuyan, Liu; Yuanyuan, Zheng; Yizhi, Yu; Qinchun, Tan; Xinping, Huang;

Identification of HLA-A*0201-restricted CD8+ T-cell epitope C₆₄₋₇₂ from hepatitis B virus core protein.

Abstract

The efficacy of a potential therapeutic vaccine against chronic hepatitis B virus (HBV) infection depends on the development of strong and multi-specific T cell responses. The potency of CD8+ cytotoxic T lymphocyte (CTL) responses toward HBV core antigen (HBcAg) has been shown to be critical for the outcomes of HBV chronic infection. In this study we have identified a previously undescribed HLA-A*0201-restricted HBcAg-specific CTL epitope (HBcAg₆₄₋₇₂, C₆₄₋₇₂, ELMTLATWV). T2 binding assay showed that C₆₄₋₇₂ had high affinity to HLA-A*0201 molecule. Functionally, the peptide C₆₄₋₇₂ could induce peptide-specific CTLs both in vivo (HLA-A2.1/K(b) transgenic mice) and in vitro (PBLs of healthy HLA-A2.1+ donors), as demonstrated by interferon-γ (IFN-γ) secretion upon stimulation with C₆₄₋₇₂-pulsed T2 cells or autologous human dendritic cells (DCs) respectively. HLA-A*0201-C₆₄₋₇₂ tetramer staining revealed the presence of a significant population of C₆₄₋₇₂-specific CTLs in C₆₄₋₇₂-stimulated CD8+ T cells. Furthermore, the peptide-specific cytotoxic reactivity and the production of perforin and granzyme B of CTLs also increased after stimulation with C₆₄₋₇₂-pulsed autologous DCs. These results indicate that the newly identified epitope C₆₄₋₇₂ has potential to be used in the development of immunotherapeutic approaches to HBV infection.

Related Organizations
Keywords

Hepatitis B virus, Perforin, Viral Core Proteins, Epitopes, T-Lymphocyte, Mice, Transgenic, Dendritic Cells, CD8-Positive T-Lymphocytes, In Vitro Techniques, Hepatitis B Core Antigens, Granzymes, Mice, Hepatitis B, Chronic, HLA-A2 Antigen, Host-Pathogen Interactions, Animals, Humans, Amino Acid Sequence, Epitope Mapping, T-Lymphocytes, Cytotoxic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
Related to Research communities