Powered by OpenAIRE graph

SNAREs, HOPS and regulatory lipids control the dynamics of vacuolar actin during homotypic fusion in S. cerevisiae.

Authors: Surya, Karunakaran; Terry, Sasser; Sailasree, Rajalekshmi; Rutilio A, Fratti;

SNAREs, HOPS and regulatory lipids control the dynamics of vacuolar actin during homotypic fusion in S. cerevisiae.

Abstract

Homotypic vacuole fusion requires SNAREs, the Rab Ypt7p, the tethering complex HOPS, regulatory lipids and actin. In Saccharomyces cerevisiae, actin functions at two stages of vacuole fusion. Pre-existing actin filaments are depolymerized to allow docking and assembly of the vertex ring (a microdomain enriched in proteins and lipids that mediate fusion). Actin is then polymerized late in the pathway to aid fusion. Here, we report that the fusion machinery regulates the accumulation of actin at the vertex ring. Using Cy3-labeled yeast actin to track its dynamics, we found that its vertex enrichment was abolished when actin monomers were stabilized by latrunculin-B, independent of the extent of incorporation. By contrast, stabilization of filamentous actin with jasplakinolide markedly augmented actin vertex enrichment. Importantly, agents that inhibit SNAREs, Ypt7p and HOPS inhibited the vertex enrichment of actin, demonstrating that the cytoskeleton and the fusion machinery are interdependently regulated. Actin mobilization was also inhibited by ligating ergosterol and PtdIns(3)P, whereas the ligation or modification of PtdIns(4,5)P(2) augmented the vertex enrichment of actin. The proteins and lipids that regulated actin mobilization to the vertex did not affect the total incorporation of Cy3-actin, indicating that actin mobilization and polymerization activities can be dissociated during membrane fusion.

Related Organizations
Keywords

Phosphatidylinositol 4,5-Diphosphate, Saccharomyces cerevisiae Proteins, Ergosterol, Vacuoles, Saccharomyces cerevisiae, SNARE Proteins, Lipids, Membrane Fusion, Actins, Polymerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%