Powered by OpenAIRE graph

p53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells.

Authors: Hongjuan, Cui; Allen, Schroering; Han-Fei, Ding;

p53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells.

Abstract

The signaling pathway for DNA damaging drug-triggered apoptosis was examined in a chemosensitive human neuroblastoma cell line, SH-SY5Y. Doxorubicin and etoposide induce rapid and extensive apoptosis in SH-SY5Y cells. After the drug treatment, p53 protein levels increase in the nucleus, leading to the induction of its transcription targets p21(Waf1/Cip1) and MDM2. Inactivation of p53, either by the human papillomavirus type 16 E6 protein or by a dominant-negative mutant p53 (R175H), completely protects SH-SY5Y cells from drug-triggered apoptosis. Cytochrome c and caspase-9 function downstream of p53 in mediating the drug-triggered apoptosis in SH-SY5Y cells. In drug-treated cells, cytochrome c is released, and caspase-9 becomes activated. Inactivation of p53 blocks cytochrome c release and caspase-9 activation. Furthermore, drug-induced cell death can be prevented by expression of a dominant-negative mutant of caspase-9. These findings define a molecular pathway for mediating DNA damaging drug-induced apoptosis in the human neuroblastoma SH-SY5Y cells and suggest that inactivation of essential components of this apoptotic pathway may confer drug resistance on neuroblastoma cells.

Keywords

Cell Nucleus, Cyclin-Dependent Kinase Inhibitor p21, Dose-Response Relationship, Drug, Immunoblotting, Apoptosis, Cytochrome c Group, DNA Fragmentation, Genes, p53, Caspase 9, Mitochondria, Enzyme Activation, Neuroblastoma, Microscopy, Fluorescence, Doxorubicin, Caspases, Cyclins, Humans, DNA Damage, Etoposide, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Average
Top 10%
Top 10%