Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions

MOESM2 of WGS based study of the population structure of Salmonella enterica serovar Infantis

Authors: Gymoese, Pernille; Kiil, Kristoffer; Torpdahl, Mia; Østerlund, Mark; Sørensen, Gitte; Olsen, John; Nielsen, Eva; +1 Authors

MOESM2 of WGS based study of the population structure of Salmonella enterica serovar Infantis

Abstract

Additional file 2: Figure S1. Maximum parsimony tree of 105 strains of Salmonella Infantis based on 28,860 core-genome SNPs with Salmonella Infantis CVM44454 as the reference genome. Branches are labelled with the number of SNP differences. Strains belonging to E-Burst Group (eBG) 31 and 297 are marked in red circles. Figure S2. Q-plots based on probability values (Q) from STRUCTURE analysis of 2311 core-genome SNPs identified in 100 Salmonella Infantis strains with Salmonella Infantis CVM44454 as the reference genome. Genetic clusters are marked with curly brackets and cluster number. A: STRUCTURE analysis on main lineage with 85 strains B: STRUCTURE analysis on distant lineage with 15 strains. Figure S3. Mean evolutionary tree calculated from BEAST analysis with the best-fitted substitution model (GTR-BS-R) on 2311 core-genome SNPs. Branches are coloured according to clusters and branch length correlates with time in years. Figure S4. Maximum parsimony tree of 167 strains of Salmonella Infantis based on 3454 core-genome SNPs with Salmonella Infantis CVM44454 as the reference genome. The collection of strains includes the 100 strains examined in this study, all genomes from Yokoyama et al. [23] (labelled Japan-clusters) and additional 6 genomes from SRA belonging to the distant lineage (cluster 7 and 8). Nodes are coloured according to clusters. Figure S5. Maximum parsimony tree of 200 genomes of Salmonella Infantis based on 4079 core-genome SNPs with Salmonella Infantis CVM44454 as the reference genome. The collection includes the 100 strains examined in this study and additional 50 genomes isolated from avian sources and 50 genomes from swine (downloaded from SRA). Nodes are coloured according to clusters and source. Figure S6. Core genome-derived phylogeny of 105 strains of Salmonella Infantis including additional 7852 public available S. Infantis genomes from Enterobase. RapidNJ tree based on cgMLST. Nodes are coloured according to clusters defined in this study.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities