Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions

Apple Polyphenols Regulate Mitochondrial Superoxide Generation and Extend Survival in a Mouse Model of Dilated Cardiomyopathy

Authors: Tadahiro Sunagawa; Kenji Watanabe; Yusuke Ozawa; Shohei Nakashima; Tomomasa Kanda; Motoyuki Tagashira; Manabu Sami; +5 Authors

Apple Polyphenols Regulate Mitochondrial Superoxide Generation and Extend Survival in a Mouse Model of Dilated Cardiomyopathy

Abstract

Apple polyphenols (AP), which contain procyanidins as major components, have been reported to display potent antioxidant activity and several beneficial health effects. To investigate the protective effect of AP intake against murine cardiomyopathy caused by endogenous oxidative stress, we orally administered AP to heart/muscle-specific manganese- superoxide dismutase (Mn-SOD)-deficient (H/M-Sod2 -/- ) mice (Nojiri et al., 2006). Dietary AP significantly increased the survival of the mutant mice, extending their mean lifespan by 29%. Dietary AP also suppressed the progression of cardiac dilatation and fibrosis in the H/M-Sod2 -/- mice. In vitro experiments revealed that AP treatment strongly suppressed the production of hydrogen peroxide induced reactive oxygen species (ROS) in C2C12 myoblast cells and endogenous superoxide production in Mn-SOD-deficient cells. Furthermore, dietary AP suppressed ROS production in Mn- SOD-deficient cardiomyocytes and oxidative DNA damage in vivo. These results indicate that dietary AP improved the survival and pathology of short-lived mice with cardiomyopathy by suppressing mitochondrial superoxide production.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
gold