Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Flyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fly
Article . 2007 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fly
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fly
Article . 2009
versions View all 2 versions

Direct Measurement of the Performance of the Drosophila Jump Muscle in Whole Flies

Authors: Christopher J H, Elliott; Holly L, Brunger; Meg, Stark; John C, Sparrow;

Direct Measurement of the Performance of the Drosophila Jump Muscle in Whole Flies

Abstract

We have developed a novel apparatus, an ergometer, to simultaneously measure the horizontal and vertical components of the work done during takeoff by the fruitfly, Drosophila. We confirm the anatomical prediction that all the work comes from the middle (mesothoracic) legs. With all six legs on the ergometer platform, displacement is directed roughly 45 degrees forwards or backwards. Both directions are equally likely. This provides for a random, rapid horizontal component to the escape behaviour for flies. When the thoracic stiffness is reduced (due to a mutation in which the indirect flight muscles (IFM) do not form myofibrils), jump output is increased. We conclude that the jump muscle, the tergal depressor of trochanter (TDT), which lacks direct muscle antagonists, performs work during the jump against thoracic stiffness. Both cuticle and IFM contribute to the thoracic stiffness as the TDT still produces repeated contractions in the absence of the IFM. Degeneration of the TDT due to mutants in three sarcomeric proteins results in reduction of the jump output. In one of these, the myosin heavy chain mutant, Mhc5, we show that degeneration occurs with age. The anatomical characteristics of Drosophila mean that we are recording, for the first time in the intact fly, the output of a single muscle that has high homology to vertebrate skeletal muscle. Developing an ergometer for Drosophila offers novel opportunities to assess the functional consequences of mutations in muscle proteins, synaptic physiology, neuromuscular development and aging.

Related Organizations
Keywords

Drosophila melanogaster, Ergometry, Mutation, Physical Exertion, Animals, Muscle Proteins, Extremities, Female, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
gold