<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Upregulation of imprinted genes in mice: An insight into the intensity of gene expression and the evolution of genomic imprinting

Upregulation of imprinted genes in mice: An insight into the intensity of gene expression and the evolution of genomic imprinting
Imprinted genes are expressed monoallelically because one of the two copies is silenced epigentically in a parent-of-origin pattern. This pattern of expression is controlled by differential marking of parental alleles by DNA methylation and chromatin modifications, including both suppressive and permissive histone acetylation and methylation. Suppressive histone modifications mark silenced alleles of imprinted genes, while permissive histone modifications mark the active alleles, suggesting the possibility that imprinted genes would show upregulation in gene expression. However, it is currently unknown whether imprinted genes show such upregulation. To address this question in mice, we estimated the intensity of expression of 59 genes relative to the rest of the genome by analyzing microarray data. Expression levels of 24 genes were validated using quantitative real-time PCR (qPCR). Expression of imprinted genes was found to be upreguled in various adult and embryonic mouse tissues. Consistent with their functions in growth and development, imprinted genes were found to be highly expressed in extraembryonic tissues and progressively upregulated during early embryonic development. In conclusion, upregulation of imprinted genes found in this study is similar to the dosage compensation (twofold upregulation) recently reported for X-linked genes. It has been proposed that the twofold upregulation of X-linked genes has been coupled with low transcriptional variation (noise) which could lead to deleterious effects on the organism. Results of this study suggest a general need for imprinted genes in the mouse to be upregulated to certain levels in order to avoid deleterious effects of variation in gene expression.
- University of Wisconsin–Oshkosh United States
- University of Wisconsin–Madison United States
Evolution, Molecular, Genomic Imprinting, Mice, Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Profiling, Animals, Gene Expression Regulation, Developmental, Embryo, Mammalian, Oligonucleotide Array Sequence Analysis, Up-Regulation
Evolution, Molecular, Genomic Imprinting, Mice, Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Profiling, Animals, Gene Expression Regulation, Developmental, Embryo, Mammalian, Oligonucleotide Array Sequence Analysis, Up-Regulation
114 Research products, page 1 of 12
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%