Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Cyclearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
Data sources: UnpayWall
Cell Cycle
Article . 2010 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2011
versions View all 2 versions

Cis-interactions between non-coding ribosomal spacers dependent on RNAP-II separate RNAP-I and RNAP-III transcription domains

Authors: Maria D. Mayan; Luis Aragón;

Cis-interactions between non-coding ribosomal spacers dependent on RNAP-II separate RNAP-I and RNAP-III transcription domains

Abstract

Ribosome biogenesis requires transcription of structural RNAs. In budding yeast, ribosomal units contain both 35S and 5S RNA genes separated by intergenic spacer sequences (IGS) that are transcribed by RNAP-II. IGS transcripts cause instability by promoting unequal sister chromatid recombination between repeats and are thus rapidly degraded by the exosome. Whether RNAP-II within IGS regions plays any functional role is unknown. Here we demonstrate that the bulk of RNAP-II bound to IGS sites is blocked for elongation and hence remains in a poised or stalled configuration. We describe a novel role for these stalled RNAP-II complexes in the formation of cis-interactions between the IGS of rDNA. We show that this function separates 35S and 5S RNA genes into polymerase-specific chromatin loops and demonstrate that removal of stalled RNAP-II complexes causes displacement of RNAP-III from the 5S gene region and transcriptional downregulation of 5S rRNA by spreading of RNAP-I. We conclude that stalled RNAP-II plays an active role in the cis-organisation of ribosomal repeats providing domains of polymerase specificity in the nucleolar transcription environment.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Transcription, Genetic, RNA, Ribosomal, 5S, RNA Polymerase III, Saccharomyces cerevisiae, DNA, Ribosomal, Protein Structure, Tertiary, DNA-Binding Proteins, RNA Polymerase I, DNA, Ribosomal Spacer, DNA, Intergenic, RNA Polymerase II, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
bronze