Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Autophagyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Autophagy
Article
Data sources: UnpayWall
Autophagy
Article . 2007 . Peer-reviewed
Data sources: Crossref
Autophagy
Article . 2007
versions View all 2 versions

Mitochondrial DNA Deletions and Chloramphenicol Treatment Stimulate the Autophagic Transcript ATG12

Authors: Gino A Cortopassi; Alessandro Prigione;

Mitochondrial DNA Deletions and Chloramphenicol Treatment Stimulate the Autophagic Transcript ATG12

Abstract

Deletion mutations of mitochondrial DNA (mtDNA) accumulate somatically on a cell-by-cell basis with age, resulting in decreased cell function in muscle and substantia nigra. In osteosarcoma cells deletions incapacitate mitochondria and induce the autophagic transcript ATG12, which is involved in an early step of the mammalian autophagy pathway. We discuss here which consequences of mtDNA deletions could induce ATG12, and provide two new pieces of data. Our previous studies demonstrated that mtDNA deletions decreased mitochondrial ATP production and proteasomal function, induced the AMPK transcript (likely as a consequence of bioenergetic depletion), and decreased the intracellular concentration of 20 amino acids (possibly as a consequence of decreased proteasomal activity). Deletions eliminate essential tRNAs for mitochondrial protein synthesis, as well as essential components of mitochondrial multisubunit enzymes; therefore, the increased level of ATG12 could result from decreased bioenergetic function, increased oxidative damage, or decreased mitochondrial protein synthesis. However, the bioenergetic inhibitor rotenone does not induce ATG12. We show here that chloramphenicol, which inhibits mitochondrial protein synthesis, induces ATG12, and that mtDNA deletions result in an increased burden of oxidatively damaged protein. Thus, mtDNA deletions could induce ATG12 through a mechanism such as the following: deletions > mitochondrial protein synthesis inhibition or ROS > proteasome inhibition > amino acid depletion > ATG12.

Related Organizations
Keywords

Protein Synthesis Inhibitors, Chloramphenicol, Transcription, Genetic, Autophagy, Small Ubiquitin-Related Modifier Proteins, Humans, Proteins, DNA, Mitochondrial, Models, Biological, Autophagy-Related Protein 12, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
bronze