Powered by OpenAIRE graph

Development of Predictive Quantitative Structure–Activity Relationship Model and Its Application in the Discovery of Human Leukotriene A4 Hydrolase Inhibitors

Authors: Sundarapandian, Thangapandian; Shalini, John; Minky, Son; Venkatesh, Arulalapperumal; Keun Woo, Lee;

Development of Predictive Quantitative Structure–Activity Relationship Model and Its Application in the Discovery of Human Leukotriene A4 Hydrolase Inhibitors

Abstract

Human LTA4H catalyzes the conversion of LTA4 to LTB4 and plays a key role in innate immune responses. Inhibition of this enzyme can be a valid method in the treatment of inflammatory response exhibited through LTB4.The quantitative structure-activity relationship (QSAR) models were developed using genetic function approximation and validated. A training set of 26 diverse compounds and their molecular descriptors were used to develop highly correlating QSAR models. A six-descriptor model explaining the biological activity of the training and test sets with correlation values of 0.846 and 0.502, respectively, was selected as the best model and used in a database screening of drug-like Maybridge database followed by molecular docking.Based on the predicted potent inhibitory activities, expected binding mode and molecular interactions at the active site of hLTA4H final leads were selected as to be utilized in designing future hLTA4H inhibitors.

Related Organizations
Keywords

Epoxide Hydrolases, Models, Molecular, Molecular Docking Simulation, Drug Discovery, Humans, Quantitative Structure-Activity Relationship, Enzyme Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average