Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2017 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

NK Cells Alleviate Lung Inflammation by Negatively Regulating Group 2 Innate Lymphoid Cells

Authors: Jiacheng Bi; Lulu Cui; Guang Yu; Xiaolu Yang; Youhai Chen; Xiaochun Wan;

NK Cells Alleviate Lung Inflammation by Negatively Regulating Group 2 Innate Lymphoid Cells

Abstract

Abstract Group 2 innate lymphoid cells (ILC2s) play an important role in orchestrating type II immune responses. However, the cellular mechanisms of group 2 innate lymphoid cell regulation remain poorly understood. In this study, we found that activated NK cells inhibited the proliferation of, as well as IL-5 and IL-13 production by, ILC2s in vitro via IFN-γ. In addition, in a murine model of ILC2 expansion in the liver, polyinosinic-polycytidylic acid, an NK cell–activating agent, inhibited ILC2 proliferation, IL-5 and IL-13 production, and eosinophil recruitment. Such effects of polyinosinic-polycytidylic acid were abrogated in NK cell–depleted mice and in IFN-γ–deficient mice. Adoptively transferring wild-type NK cells into NK cell–depleted mice resulted in fewer ILC2s induced by IL-33 compared with the transfer of IFN-γ–deficient NK cells. Importantly, during the early stage of papain- or bleomycin-induced lung inflammation, depletion of NK cells resulted in increased ILC2 numbers and enhanced cytokine production by ILC2s, as well as aggravated eosinophilia and goblet cell hyperplasia. Collectively, these data show that NK cells negatively regulate ILC2s during the early stage of lung inflammation, which represents the novel cellular interaction between two family members of ILCs.

Keywords

Mice, Knockout, Enzyme-Linked Immunosorbent Assay, Cell Separation, Pneumonia, Flow Cytometry, Lymphocyte Activation, Adoptive Transfer, Immunity, Innate, Lymphocyte Subsets, Killer Cells, Natural, Mice, Inbred C57BL, Disease Models, Animal, Mice, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
bronze