Synergistic Expression of the CXCL10 Gene in Response to IL-1β and IFN-γ Involves NF-κB, Phosphorylation of STAT1 at Tyr701, and Acetylation of Histones H3 and H4
pmid: 23740952
Synergistic Expression of the CXCL10 Gene in Response to IL-1β and IFN-γ Involves NF-κB, Phosphorylation of STAT1 at Tyr701, and Acetylation of Histones H3 and H4
Abstract The CXCL10 gene encodes a peptide that chemoattracts a variety of leukocytes associated with type 1 and type 2 diabetes. The present study was undertaken to determine the molecular mechanisms required for expression of the CXCL10 gene in response to IL-1β and IFN-γ using rat islets and β cell lines. IL-1β induced the expression of the CXCL10 gene and promoter activity, whereas the combination of IL-1β plus IFN-γ was synergistic. Small interfering RNA–mediated suppression of NF-κB p65 markedly inhibited the ability of cytokines to induce the expression of the CXCL10 gene, whereas targeting STAT1 only diminished the synergy provided by IFN-γ. Furthermore, we found that a JAK1 inhibitor dose dependently reduced IFN-γ–controlled CXCL10 gene expression and promoter activity, concomitant with a decrease in STAT1 phosphorylation at Tyr701. We further discovered that, although the Tyr701 phosphorylation site is inducible (within 15 min of IFN-γ exposure), the Ser727 site within STAT1 is constitutively phosphorylated. Thus, we generated single-mutant STAT1 Y701F and double-mutant STAT1 Y701F/S727A adenoviruses. Using these recombinant adenoviruses, we determined that overexpression of either the single- or double-mutant STAT1 decreased the IFN-γ–mediated potentiation of CXCL10 gene expression, promoter activity, and secretion of protein. Moreover, the Ser727 phosphorylation was neither contingent on a functional Y701 site in β cells nor was it required for cytokine-mediated expression of the CXCL10 gene. We conclude that the synergism of IL-1β and IFN-γ to induce expression of the CXCL10 gene requires NF-κB, STAT1 phosphorylated at Tyr701, recruitment of coactivators, and acetylation of histones H3 and H4.
- Duke University United States
- University of Tennessee at Knoxville United States
- Duke University Hospital United States
- Duke University Health System United States
- University of Calgary Canada
Interleukin-1beta, NF-kappa B, Acetylation, Rats, Chemokine CXCL10, Histones, Interferon-gamma, STAT1 Transcription Factor, Gene Expression Regulation, Cell Line, Tumor, Mutagenesis, Site-Directed, Animals, Humans, Tyrosine, Phosphorylation, Rats, Wistar, Cells, Cultured, Signal Transduction
Interleukin-1beta, NF-kappa B, Acetylation, Rats, Chemokine CXCL10, Histones, Interferon-gamma, STAT1 Transcription Factor, Gene Expression Regulation, Cell Line, Tumor, Mutagenesis, Site-Directed, Animals, Humans, Tyrosine, Phosphorylation, Rats, Wistar, Cells, Cultured, Signal Transduction
20 Research products, page 1 of 2
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
