Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2010 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

Tc17 Cells Are Capable of Mediating Immunity to Vaccinia Virus by Acquisition of a Cytotoxic Phenotype

Authors: Norman Yeh; Qingsheng Li; Baohua Zhou; Hiromasa Hamada; Lynette Guindon; Nan Wang; Mark H. Kaplan; +6 Authors

Tc17 Cells Are Capable of Mediating Immunity to Vaccinia Virus by Acquisition of a Cytotoxic Phenotype

Abstract

Abstract CD8 T cells can acquire cytokine-secreting phenotypes paralleling cytokine production from Th cells. IL-17–secreting CD8 T cells, termed Tc17 cells, were shown to promote inflammation and mediate immunity to influenza. However, most reports observed a lack of cytotoxic activity by Tc17 cells. In this study, we explored the anti-viral activity of Tc17 cells using a vaccinia virus (VV) infection model. Tc17 cells expanded during VV infection, and TCR transgenic Tc17 cells were capable of clearing recombinant VV infection. In vivo, adoptively transferred Tc17 cells lost the IL-17–secreting phenotype, even in the absence of stimulation, but they did not acquire IFN-γ–secreting potential unless stimulated with a virus-encoded Ag. However, examination of cells following infection demonstrated that these cells acquired cytotoxic potential in vivo, even in the absence of IFN-γ. Cytotoxic potential correlated with Fasl expression, and the cytotoxic activity of postinfection Tc17 cells was partially blocked by the addition of anti-FasL. Thus, Tc17 cells mediate VV clearance through expression of specific molecules associated with cytotoxicity but independent of an acquired Tc1 phenotype.

Related Organizations
Keywords

Cytotoxicity, Immunologic, Mice, Knockout, Mice, Inbred BALB C, Mice, Inbred C3H, Interleukin-17, Immunity, Receptors, Antigen, T-Cell, Enzyme-Linked Immunosorbent Assay, Mice, Transgenic, CD8-Positive T-Lymphocytes, STAT4 Transcription Factor, Flow Cytometry, Interleukin-12, Mice, Inbred C57BL, Interferon-gamma, Mice, Vaccinia, Animals, T-Box Domain Proteins, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
bronze